[This question paper contains 7 printed pages]

Your Roll No.

Sl. No. of Q. Paper : 7407

Unique Paper Code : 32341502

Name of the Course : B.Sc.(Hons.) Computer

Science

Name of the Paper : Theory of Computation

Semester : V

Time: 3 Hours Maximum Marks: 75

Instructions for Candidates

- (a) Write your Roll No. on the top immediately on receipt of this question paper.
- (b) All questions in Section-A are compulsory.
- (c) Attempt any four questions from Section-B.
- (d) Parts of a question must be answered together.
- (e) Assume alphabet $\Sigma = \{a,b\}$ unless stated otherwise.

P.T.O.

Section - A

 (a) Do the following regular expression represent the same language (give reason

$$R_1 = ((a + b)(a + b))^* a$$

 $R_2 = (a + b)((a + b)(a + b))^* a$

- (b) Write a regular expression and build deterministic finite automata for the language containing all strings having a every odd position.
- (c) Describe in English the language represented by the following regule expressions:
 - (i) b*ab*ab*ab* + b*ab*ab*(ii) (a + b)*aa (a + b)*
- (d) Describe pumping lemma for regul languages.
- (e) Based on the language S = {aa, ba, ab, b describe the language S*.

- (f) What are the languages generated by the following grammars: 3+3
 - (i) $S \rightarrow XA$ $X \rightarrow aXb \mid \Lambda$ $A \rightarrow aA \mid \Lambda$
 - (ii) $S \rightarrow AB$ $A \rightarrow aA \mid \Lambda$ $B \rightarrow bB \mid \Lambda$
- (g) Show that the following CFG is ambiguous:

 $S \rightarrow X a X$ $X \rightarrow a X \mid b X \mid \Lambda$

(h) Describe the language (in English) accepted by the following PNA:

P.T.O.

- (i) Describe the halting problem.
- (j) Let $M=(K, \Sigma, \delta, s, \{h\})$, where $K = \{q_0, q_1, h\}$ $\Sigma = \{a, b, \sqcup, \triangleright\}$ $S = q_0$

and δ is given by the following table:

q,	σ	δ(q, σ)
$\mathbf{q_0}$	a	(q ₁ , b)
$\mathbf{q_0}$	b	(q ₁ , a)
\mathbf{q}_{0}	L MOR	(h, ∐)
\mathbf{q}_{0}	Coded	(q_0, \rightarrow)
$\mathbf{q_i}$	Joseph A	(q_0, \rightarrow)
$\mathbf{q_{i}}$	b	(q_0, \rightarrow)
$\mathbf{q_{i}}$		(q_0, \rightarrow)
$\mathbf{q}_{\mathbf{i}}$	>	(q_1, \rightarrow)

Trace the computation of M starting from the configuration $(q_0, \triangleright \underline{a}abbba)$.

Section -B

- 2. (i) Let L=All strings that end with aa or bb.

 Construct DFAs for L and L' (i.e., Complement of L).
 - (ii) Is the language {a^mb^m; m≥0} regular? Justify using Pumping Theorem.
 - 3. (i) Build an FA accepting the language comprising of all strings having first two characters same as the last two.
 - (ii) Convert the following Transition Graph (TG) into regular expression using Bypass algorithm.

- Give Context Free Grammar (CFG) for the (i) following language: $\{a^{i}b^{j}c^{k} \mid i+j=k; i, j, k \ge 0\}$ and $\Sigma = \{a,b,c\}$
 - (ii) Build pushdown automation (PDA) to accept 5 the following language: { Sb^{n+1} ; S is a string of only a's, n=length(S), $n \ge 1$
- 5. (i) Convert the following CFG to CNF: 5 $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow 6 | 7_{\text{min}} | 7_{\text{min$

The terminals here are + * () 6 7.

- (ii) Prove that the recursive languages are closed under complementation.
- Design a Turing Machine that scans to the right until it finds two consecutive a's and then halts. The alphabet of the Turing machine should be $\{a, b, \bigcup, \Delta\}$.
 - (ii) Prove that context-free languages closed under Union and concatenation. 5

- 7. (i) Build FA for each of the following regular languages L_1 and L_2 . 4 $L_1 = b(a+b)^* \qquad L_2 = a(a+b)^*b + b(a+b)^*a$
 - (ii) Build FA for $L_1 \cap L_2$.
 - (iii) Describe in English the language represented by $L_1 \cap L_2$.

Journal Contract of the Contra